تخمین عمق آبشستگی موضعی اطراف گروه پایه های استوانه ای و مربعی پل با استفاده از شبکه های عصبی مصنوعی و عصبی فازی

thesis
abstract

پل ها از جمله مهم ترین سازه‏های رودخانه ای هستند. یکی از موثرترین عوامل تخریب پل ها، آبشستگی موضعی اطراف پایه پل می باشد. همه ساله پل های زیادی در سراسر جهان به دلیل در نظر نگرفتن نقش عوامل هیدرولیکی تخریب می شوند. بنابراین شناخت این پدیده، پیش ‏بینی دقیق میزان آبشستگی و لحاظ کردن آن در طراحی پل ها بسیار ضروری است. آبشستگی در تک پایه ‏ها توسط محققان زیادی مورد مطالعه قرار گرفته در حالی که در زمینه آبشستگی گروه پایه‏ ها تحقیقات قابل توجهی موجود نمی باشد. مکانیزم جریان اطراف گروه پایه پل آن قدر پیچیده است که بدست آوردن یک مدل تجربی عمومی که بتواند تخمین درستی از عمق آبشستگی ارائه کند، بسیار مشکل است. در این مطالعه با استفاده از شبکه عصبی مصنوعی (ann) و سیستم فازی- عصبی استنتاجی تطبیقی (anfis)، 4 مدل جهت برآورد پروفیل بستر آبشسته اطراف گروه پایه‏ های سه تایی پل طراحی گردید؛ 3 مدل بعددار با استفاده از 8 پارامتر ورودی شامل زمان، شکل پایه، اندازه پایه، عمق جریان، سرعت متوسط جریان، سرعت بحرانی و مختصات طولی و عرضی نقاط بستر، در نرم ‏افزارهای qnet و matlab به طور مجزا طراحی گردید که خروجی آن ها عمق آبشستگی (در صورت منفی بودن خروجی) یا ارتفاع پشته رسوبات (در حالت مثبت بودن خروجی) می باشد. مدل دیگری نیز با استفاده از 10 پارامتر ورودی بی بعد و شبکه‏ های عصبی در محیط matlab طراحی شد. بیش از 120000 داده آزمایشگاهی که توسط موسسه تحقیقات آب وزارت نیرو، طی 33 آزمایش در شرایط آب زلال جمع آوری شده بود در آموزش و ارزیابی مدل ها به کار رفت. هر سه مدل شبکه عصبی، شبکه‏ های پرسپترون چند لایه می باشند که به روش پس انتشار خطا و الگوریتم یادگیری مارکوارت– لونبرگ آموزش می بینند. تأثیر روش های مختلف نرمال کردن داده ‏ها بر روی سرعت اجرا و دقت شبکه‏ های عصبی مورد بررسی قرار گرفت. هم‏چنین به منظور بی بعد کردن پارامترها و طراحی دقیق ترین مدل بی بعد، دو روش مختلف امتحان گردید و در نهایت بی بعد کردن پارامترهای طول، عرض و عمق آبشستگی با استفاده از عمق جریان نتایج بهتری دربرداشت. در مدل فازی- عصبی نیز از الگوریتم دسته‏ بندی کاهشی داده‏ ها به منظور تعیین تعداد قوانین استفاده شد و مدل با استفاده از روش هیبرید آموزش دید. در طراحی این مدل از پارامترهای بعددار استفاده شده است. نتایج نشان داد که مدل فازی- عصبی دارای دقت پیش‏ بینی بیشتری نسبت به 3 مدل دیگر می باشد (r^2=0.98) و ((rmse=0.003(m). این مدل همانند مدل شبکه عصبی بعددار تهیه شده با qnet، شامل 25 مدل هوشمند می باشد که هر مدل به تخمین پروفیل بستر آبشسته در طول خاصی در اطراف گروه پایه اختصاص دارد. آنالیز حساسیت انجام شده بر روی شبکه‏ های عصبی مربوط به نواحی مختلف نیز نشان داد که تأثیر پارامترهای ورودی در بخش های مختلف اطراف گروه پایه یکسان نمی باشد و در طول ناحیه آبشسته تغییر می کند.

similar resources

کاربرد شبکه عصبی مصنوعی در تخمین عمق آبشستگی اطراف پایه پل در بستر با رسوبات چسبنده

بیشتر آسیب پل‌ها به دلیل آبشستگی اطراف پی‌های‌ آن در طول سیلاب هستند. بنابراین برای حداقل‌سازی احتمال خرابی، یک مدل بهبود یافته برای تخمین عمق آبشستگی اطراف آنها لازم است. به دلیل اینکه آبشستگی در پایه‌های پل یک تابع پیچیده از مشخصات مصالح کف، ویژگی‌های سیال، مشخصات جریان و هندسه‌ی پایه است، معادلات تجربی توانایی تخمین دقیق عمق آبشستگی را ندارند. در این تحقیق، روشی سودمند برای تخمین عمق آبشستگی...

full text

تخمین عمق آبشتگی موضعی در اطراف پایه های واقع در مجرای اصلی آبراهه ها به کمک شبکه عصبی مصنوعی

تحقیقات آزمایشگاهی و صحرایی در زمینه آبشستگی اطراف پایه های مستقر در مجاری اصلیرودخانه ها در پنجاه سال گذشته منجر به ارائه روابط متعدد برای بر آورد حداکثر عمق حفره آبشستگی شده است . هر کدام از روابط یاد شده اثر پارامتر های محدودی را مورد بررسی قرار می دهد به همین دلیل بر آوردهای قابل اعتمادی ارائه نمی دهند. در این تحقیق با بهره گیری از معتبر ترین داده های جمع آوری شده در چند دهه گذشته امکان است...

full text

مدل‌سازی آبشستگی اطراف آبشکن در قوس‌ها با استفاده از منطق فازی و شبکه عصبی مصنوعی

آبشکن سازه­ای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویه­ای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل  احداث می­شود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن می­باشد. لذا مدل­سازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار می­باشد. در این تحقیق د...

full text

تخمین هوشمند حداکثر عمق آب‌شستگی اطراف آب‌شکن‌های L شکل با استفاده از شبکه‌های عصبی مصنوعی و سیستم استنتاج فازی- عصبی

از جمله مسایل مهم در طراحی آب‌شکن‌ها، پدیده آب‌شستگی موضعی دماغه آنها می‌باشد که به‌علت تنگ‌شدگی مقطع جریان و وجود گردابه‌های قوی به‌وجود می‌آید و یکی از شاخص‌های مهم در تعیین مشخصات حفره‌ی آب‌شستگی، حداکثرعمق آب‌شستگی می‌باشد. امروزه شبکه‌های عصبی کاربردهای بسیاری در مسایل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کرده است. بنابراین در این پژوهش از...

full text

مطالعه آزمایشگاهی پدیده آبشستگی موضعی در اطراف گروه پایه پل

هدف اصلی پژوهش حاضر ارزیابی حداکثر عمق آبشستگی در شرایط آب زلال در اطراف پایه‌های قرار گرفته در گروه‌پایه‌های دو تایی و سه تایی با چیدمان خطی در شرایط تغییرات فاصله بین پایه‌ها و تغییرات زاویه برخورد جریان است. فاصله بین پایه‌ها (G) از 2 برابر تا 10 برابر قطر پایه (D) و همچنین زاویه برخورد جریان به پایه‌ها از 0 تا 90 درجه متغیر بوده است. نتایج آزمایشات نشان داد که در چیدمان دو پایه حداکثر عمق آ...

full text

بررسی تأثیر دبی و اندازه قطر پایه در عمق و حجم آبشستگی موضعی اطراف ‏پایه پل

آبشستگی پایه­ های پل یکی از مسائل مهم در هیدرولیک پل­ ها است. این پدیده منجر به خالی شدن زیر پی پایه­ های پل شده و در نتیجه باعث واژگونی آن‌ها می­ شود. مکانیزم آبشستگی موضعی اطراف پایه­ ها بسیار پیچیده بوده و تاکنون محققین زیادی به بررسی این پدیده مهم پرداخته­ اند. همه ساله پل­ های زیادی در سرتاسر دنیا در اثر آبشستگی تخریب شده و باعث خسارت‌های جانی و مالی زیادی می­ شوند. از این­ رو بررسی آبشستگ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده مهندسی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023